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The equations describing parametric instabilities of a finite-amplitude internal gravity 
wave in an inviscid Boussinesq fluid are studied numerically. By improving the 
numerical approach, discarding the concept of spurious roots and considering the 
whole range of directions of the Floquet vector, Mied’s work is generalized to its full 
complexity. In  the limit of large disturbance wavenumbers, the unstable disturbances 
propagate in the directions of the two infinite curve segments of the related resonant- 
interaction diagram. They can therefore be classified into two families which are 
characterized by special propagation directions. At high wavenumbers the maximum 
growth rates converge to limits which do not depend on the direction of the Floquet 
vector. The limits are different for both families; the disturbance waves propagating 
at the smaller angle to the basic gravity wave grow at the larger rate. 

1. Introduction 
The occurrence of parametric instabilities in finite-amplitude internal gravity waves 

has been studied in great detail by McEwan & Robinson (1975), Mied (1976) and Drazin 
(1977). The process involves the forcing of disturbance waves a t  the frequency of a 
basic wave so that its time dependence is described by differential equations with 
periodic coefficients. McEwan & Robinson confined themselves to disturbance waves 
with length scales much smaller than the basic wavelength, so that the differential 
equations can be reduced to Mathieu’s equation, whose properties are well-known 
(e.g. Abramowitz & Stegun 1965). Mied extended the analysis of McEwan & Robinson 
without making any restriction on the disturbance length scales and obtained two 
coupled partial differential equations with periodic coefficients. They can be solved 
numerically by the method of truncated Fourier series, which has also been success- 
fully applied to stability studies of planetary waves and gravity-wave-associated 
resonance effects in the ionosphere (Lorenz 1972; Gill 1974; Mied 1978; Klostermeyer 
1978). 

The present work is an extension of Mied’s (1976) investigations. Therefore the 
theoretical approach outlined in $ 2  will parallel his ideas. I n  § 3, we briefly describe 
an efficient method for solving the governing equations and re-examine some of his 
results. The method of solution allows us, in particular, to study the behaviour of 
maximum growth rates for Fourier components up to n = 10 at several directions of 
the Floquet vector (5  4). 
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2. Theoretical approach 
Mied (1 976) starts with the two-dimensional nonlinear equations describing the 

stream function and buoyancy in an inviscid Boussinesq fluid with constant Brunt- 
VaisalB frequency. The finite-amplitude internal gravity wave is assumed t o  be plane 
and harmonic, and thus represents an exact solution of the nonlinear equations. The 
total stream function and buoyancy fields are expressed as the sum of the basic wave 
and a perturbation. Substituting the total fields into the governing equations and 
neglecting nonlinear terms, one obtains two coupled linear differential equations with 
periodic coefficients for the perturbations of the stream finction and buoyancy. 

Y 

t (-a sin p ,  1 + a cos 0) 

FIGURE 1. Propagation vector of basic gravity wave (0, i), and Floquet vector 
( - a  sin /3, a cos p), in (6, q)-co-ordinates (after Mied 1976). 

The equations can be simplified by introducing non-dimensional variables x, y ,  t ,  

(5,ij) = ~ ' ( x , Y ) ,  t" = N-lt, 9 = h ~ ~ i V @ - ,  6 = k-'N2b, @ and b:  

where 2 and z j  are the horizontal and vertical co-ordinates, t is time, and $ and 6 are 
the perturbations of the stream function and buoyancy. I n  addition, k and N denote 
respectively the wavenumber of the basic gravity wave and the Brunt-Vaisrila 
frequency. Further simplication is obtained by using a rotated rectangular co-ordinate 
system (5, q) whose y-axis points in the direction of the basic-state wavenumber 
vector 

where 8 is the angle between the horizontal and the propagation vector (figure 1) .  

6 = xsin8-ycos8, q = xcosO+ysinO, 
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The equations admit a separable Floquet solution of the form 

m 

($, b )  = exp [i( - a sin /I< + a cos py) + At] C ($,, b,) exp in@, (1)  
n = - m  

where @ = y - t cos 8 is the phase angle of the basic gravity wave. We assume a solu- 
tion that is bounded in space so that la/ can be interpreted as the magnitude of the 
Floquet vector propagating a t  an angle p to  the basic-state wavenumber vector 
(figure 1) .  Then A and ($,, b,) are in general complex and can be computed from the 
linear eigenvalue problem 

1 ( 2 )  
P-&n-l+ ( P O - A ) ~ ~ + Q ~ ~ , + P I ~ C . ~ + ~ =  0,  

‘-1 $,-I+ 8-1 bn-l+ yo 1C.n + (80 - A)  bn + $%+I+ 81 b n + l =  0.j 

The coefficients p,,, q,, . . . depend on n, a,  p, 8 and M = Ak2/2N,  where A is the ampli- 
tude of the basic-state stream function: 

(as inP)2+(acosp+n- 1)2-  1 
p-, = - aM sin /3 

(asin/3)2+ ( a c o ~ / 3 + n ) ~  ’ 
p, = incos8,  

p l  = aM sin@ 
(asinP)2+ (acosp+n+ 1 

(a  sin/3)2 + (a  cosp+ n)2 ’ 

- ia sinpsin 8+ i(a cos p+ n) cos 8 
(a  sin p ) 2 +  (a  cos p + n)2 ‘0 = 

r-l = -aMsinp, ro = -iasinpsinO+i(acosp+n)cos8, 

7 

r1 = -r-l, s-] = r-,, so = p o ,  s1 = -r-l .  

To find growing disturbances with 9 ( A )  = A, > 0, ( 2 )  is considered for basic waves 
with vanishingly small amplitudes. It appears that the disturbance waves which can 
grow are those forming resonant triads with the basic wave. If 8, denotes t,he angle 
between the horizontal and the wavenumber vector of the nth disturbance wave, the 
resonance condition is 

Expressions for cos On and cos On+, can be obtained from ( 2 )  when M = 0: 

(3) cos 6, + COS en+, = cos 0. 

cos 8, = I -a  sinpsin 8 + (acos p+ n) cos 81 [(a sinP)Z+ (a cos /?+ n)2]-&. (4) 

Mied showed that (4) yields in fact particular (a ,  /?)-pairs which satisfy the resonance 
condition (3) and yield A, > 0 for finite-amplitude basic waves. 

3. Numerical approach and remarks on the nature of the instabilities 
A numerical solution of ( 2 )  can be found by truncating the Fourier series in (1) a t  

n = f N ,  where N now denotes a suficiently large integer. Then ( 2 )  becomes a finite 
system of homogeneous equations for ($rm,bn). I n  a further step, Mied (1976) has 
eliminated b,  so that the resulting eigenvalue problem includes terms that are quad- 
ratic in A. It has been solved by a sophisticated bisection technique, which, however, 
requires an a priori knowledge of the approximate locations of the eigenvalues in the 
complex A-plane. 
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A simpler approach is to solve (2) for - N < n < N without eliminating b,. Then 
there are several algorithms yielding all eigenvalues and eigenvectors without any 
a priori knowledge of the approximate values of A. The following results have been 
obtained by means of the QR algorithm using the eigensystem routines of Smith et al. 
(1976). They were computed with an accuracy better than which could always 
be obtained by taking sufficiently large values for N .  In  most cases it was possible to 
choose N < 15, so that the order of the coefficient matrix of (2) was (4N + 2 )  < 62. 
Then the execution time on an UNIVAC 1100/82 computer, on which all computations 
were performed, was always less than 1 min. 

First of all we have re-examined Mied's (1976) statement that, although (3) and (4) 
have two solutions at a = 0.798 and a = 6.67 for 8 = 30°, p = 90" and n = 0, growing 
parametric disturbances will occur only in the vicinity of a = 0.798. He identified 
a = 6.67 as a spurious root not contiguous to a region of parametric instability in the 
(a, M )  parametric space. This statement clearly is in contradiction to Hasselmann's 
(1967) criterion that nonlinear resonant triads consisting of one finite and two in- 
finitesimal wave components must be unstable for sum interactions. Our computa- 
tions in fact yield parametric instabilities in the vicinity of a = 6.67, as shown in 
figure 2 for a normalized basic state amplitude M = 0.1. The value a = 0.798 cor- 
responds to a resonant triangle with one tip on curve C of the interaction diagram 
(figure 3),  whereas a = 6-67 corresponds to a triangle with a tip on curve B (Mied 
1976). Also, for 0 = 30", /3 = 90" and n > 0, there are always two roots satisfying (3) 
and ( 4 ) .  The related resonant triads extend along curves A and B of the interaction 
diagram. The a-values for curve A are 0-933 for n = 1, 1.65 for n = 2 (Mied 1976); 
along curve B we obtain a = 19.8 for n = 1 and a = 33.0 for n = 2. In agreement with 
Hasselmann (1  967) we again find parametric instabilities that are characterized by 
maximum growth rates A, close to these values (figure 2). It should be mentioned that, 
for 8 = 30°, there are occasionally up to four resonant triads for given values of p and 
n which give rise to four different parametric instabilities. 

The above results can be generalized for arbitrary values of 8 and /I. For sufficiently 
large 1.1 and 0 < p < 180", ( 4 )  yields 

case, COSen+l. (5) 

We then have approximately cos 8, = + cos 8 from (3), so that ( 4 )  becomes a quadratic 
in a whose discriminant d is 

d = 4n2 sin2p cos2 8( 3 + sin2 8). 

For large In\, (3) and (4) thus always have two real roots for /I and 8 within the open 
intervals (0, 180") and ( - go", 90") respectively. Both roots define two curves in the 
(a, P)-plane; an example for 8 = 30" and n = 10 is shown in figure 4. Note that both 
curves A and B were not obtained by using the asymptotic relation (5) but represent 
exact numerical solutions of (3) and (4). The discontinuities in the curves are general 
features occurring at 

in the limit of large n. Their physical meaning will immediately become clear. Curves 
A and B define two families of triads each following one of those curve segments in 
the resonant-interaction diagram which extend to infinity and are correspondingly 
denoted by A and B in figure 3 (for further interaction diagrams see Phillips 1969). 

(6) PA, = arccos ( & &os 8) - 8, 
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FIGURE 3. Resonant-interaction diagram (after Phillips 1969). The curve segments A ,  B and C 
define the nonlinear resonant sum interactions of two disturbance waves with a basic-state wave 
propagating at an angle of 30" to the horizontal. For a basic-state wave with a vanishingly small 
amplitiide 111, an unstable disturbance wave always participates in a nonlinear resonant inter- 
action with the basic wave. The resonant triangle with a tip on curve C gives rise to a parametric 
instability at  a = 0.798, /3 = 90" and TL = 0. The second resonant triangle has a tip on curve B 
and corresponds to a parametric instability at  a = 6.67, /3 = 90" and n = 0. 
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FIGURE 4. Solution curves satisfying (3) and (4) for 6 = 30' and n, = 10. Points on curve A ( B )  
define resonant triads extending along curve segment A ( B )  of the interaction diagram shown 
in figure 3. 

The angles formed by both curve segments with the horizontal asymptotically become 
arccos ( & + cos O), showing that the discontinuities in the (01, P)-plane occur whenever 
/3 approaches the direction of curve segment A or B of the interaction diagram. 

It should be mentioned that the results for - 180' < p < 0" are related to those for 
0" < P < 180" by the transformation 

(a, PI --t ( -a, p- 180°), (7) 

which does not alter (2) and (4). Similarly, the results for n < 0 can be obtained from 
those for n > 0 by the transformation 

(n,a)+(--, -a); (8) 

4 -a) = h " ( 4 ,  ($-J --a), b-n( -4)  = ($:(a), bZ(a)), 

then (4) remains unaltered, and (2) yields 

where the asterisk denotes complex conjugates. The results for negative B can be 
obtained from those for positive O or vice versa, since the transformation 

( O , P ) + ( - O ,  -P) (9) 
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leaves (4) unaltered, and yields 

($J6, P), b,(& PI),  
from (2).  

In  the following we shall denote the parametric instabilities by A or B depending 
on the curve segment along which the related resonant triangles extend in the limits 
of large In1 and small amplitudes M .  For n = 0, the tip of a resonant triangle may lie 
along curve segment C of the interaction diagram. For simplicity we shall associate 
the corresponding instability with family A or B depending on the curve segment to 
which the resonant triangles move with increasing Inl. According to Phillips (1966)) 
the interaction times for nearly collinear waves are shorter than those for nearly 
equilateral waves. Therefore we expect that, for 0 = 30", the maximum growth rates 
of A-instabilities are in general greater than those of B-instabilities. 

4. Maximum growth rates 
It is reasonable to assume that, if a t  all, the disturbance waves with the largest 

growth rates should be the ones most easily observed in atmospheric and oceanic 
flows. Therefore we shall now concentrate on some properties of maximum growth 
rates A, = max (h,(a)) which can be interpolated by a quadratic using three computed 
points in the (a, &)-plane. 

Growth rates of A- and B-instabilities as functions of a for 6 = 30°, P = 90" and 
n < 2 are shown in figure 7 of Mied (1976) and in figure 2 of this paper respectively. 
Both figures indicate that, for constant amplitude M of the basic wave, the maximum 
growth rates tend to increase with higher modenumber n. Figure 5 shows in fact that 
the maximum growth rates of A- and B-instabilities converge monotonically with 
increasing n. It should be mentioned that, for the particular parameters chosen in 
figure 5, the growth rates of the B-instabilities can be computed with an accuracy of 

only for n < 3 if the Fourier series in (1) is truncated at  n = 5 15. The reason is 
that the corresponding resonant triads have relatively large a values which, in turn, 
are due to the fact that ,8 = 90" is close to the discontinuity point pB = 86" resulting 
from (6) for 6' = 30". It will be shown below, however, that the limitation to small 
modenumbers n in the case of large a does not impose severe restrictions to the use of 
the truncated Fourier series approximation. 

Up to  this point, P was fixed to 90". We now vary /3 for a given basic state with 
6 = 30" and M = 0.1 to find max (Ar(p)), i.e. those directions /3 at which the fastest 
growing disturbance waves occur. The results for 10" < p < 170" and n = 0, 1, 4 and 
10 are shown in figure 6 and can be summarized as follows. 

( a )  For n = constant, A, has absolute maxima a t  p = 34" for A-instabilities, and 
a t  /3 = 86" for B-instabilities. These angles are identical with the asymptotic angles 
of the infinite curve segments A and B in the resonant-interaction diagram. 

( b )  With increasing n, A, converges to the limits 0.0517 for A-instabilities and 
0.0462 for B-instabilities. The computations show within an accuracy of that 
both limits do not depend on p. For any given p, the convergence is the faster the 
closer ,8 is to PA or pU,  depending on the type of the instability. 

( c )  With /3 = constant, A, increases monotonically with n for A-instabilities, 
whereas it may vary non-monotonically a t  small n in the case of B-instabilities. 
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FIGURE 6. Maximum growth rates A, of A-instabilities (left) and B-instabilities (right) versus 
direction of the Floquet vector, for several modenumbers n. Here 0 = 30" and M = 0.1. With 
increasing 12, the growth rates of A- (B-) instabilities asymptotically approach the limit A, = 
0.0517 (0.0462), which does not depend on p. At n = 1 and p N 145", four unstable disturbances 
occur simultaneously. 
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FIGURE 7. Loci of maximum growth rates of A -  and B-instabilities in the (a,  P)-plane for n = 0. 
Both curves end at B = 120" because for n = 0 no resonant triads and parametric instebilities 
exist at  larger angles. 

( d )  For n = 0, there are no parametric instabilities at /3 2 120' because cos8, > 
cos 8, i.e. no resonant triads can exist. If there are four resonant triads a t  particular 
(a, P)-pairs, as mentioned in Q 3, four parametric instabilities may also exist simul- 
taneously. In  figure 6, this happens a t  n = 1 and /3 N 145". 

( e )  Results for - 170' < /3 < - 10' and/or n < 0 can be easily obtained by applying 
the transformations (7)  and (8). From (9) we can get results for 8 = - 30°, which may 
be useful for applications in the atmosphere where the phase of internal gravity waves 
in general propagates downward. 

The computations have shown that the maximum growth rates A, always occur at 
a-values close to those obtained from (3)  and (4) for the related resonant triads. The 
maximum growth rates define two curves in the (a ,  P)-plane which, for large In1 , look 
very much like those in figure 4 except that the values a t  the ordinate depend on n. 
There are, in particular, discontinuities at ,8 = 34" for A-instabilities and /3 = 86" for 
B-instabilities, so that the absolute maxima of A, shown in figure 6 coincide with 
infinitely large values of JaJ .  To explain further details of figure 6 we consider the loci 
of maximum growth rates in the (a, P)-plane for n = 0 (figure 7). Besides the familiar 
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discontinuities, both curves show minima of la1 near p = 60" which cause the minima 
of t,he n = 0 growth rate curves a t  the same angle. The secondary maxima of the 
n = 0 growth rate curves a t  p = 75" and 25") respect'ively, are not correlated with 
any particular features in figure 7. They obviously result from the local minima at 
p 2: 60" and a general tendency of the growth rate curves to decrease with increasing 
values of I/3-pAI and I/3-pSl respectively. The n = 1 maximum-growth-rate curve 
for B-instabilities shows a maximum at  p = 15" and a minimum at p = 30" which 
can be explained in the same way, whereas the maximum a t  p = 150" is due to the 
fact that  four parametric instabilities exist simultaneously. 

The convergence speed of the Fourier series in ( 1 )  turned out to  decrease with 
increasing lal. Thus the convergence is particularly slow for p-values near the dis- 
continuity points PA and PB,  so that the available computer core and time prohibit 
the solution of (2) for large modenumbers In/. Figures 5 and 6 indicate, however, that, 
for ,!I N PA or p N PB,  A, converges rapidly to the corresponding limits with increasing 
In\ , rendering computations with large In1 unnecessary. 

5. Concluding remarks 
Our investigations have added to Mied's (1  976) results in three ways. 
(a) The numerical approach has been improved, so that for a basic internal gravity 

wave of given amplitude and propagation direction the properties of parametric 
instabilities can be studied for all magnitudes and directions of the Floquet vector at 
reasonable expense. It should be mentioned, however, that the eigensystem methods 
would work even more efficiently if they were fitted to the particular band structure 
of the coefficient matrix in (2). 

(b )  The improved numerical approach allowed us to discard the concept of spurious 
roots and to find those parametric instabilities that have their origin in the resonant 
triads lying along branch B of the interaction diagram. It is not yet clear why Mied 
has missed these solutions. Substitution of the corresponding roots into his equation 
(14) may reveal whether these solutions got lost by eliminating b,  from the interaction 
equations or whether his search strategy simply did not cover the relevant parameter 
space. 

(c) By removing the restriction /3 = 90" and extending the number of Fourier 
components we have confirmed the suggestion that the disturbance waves with the 
largest wavenumbers are the most unstable ones. These disturbances always propagate 
in two particular directions, which coincide with the directions of the two infinite curve 
segments in the resonant interaction diagram. With increasing wavenumber, the 
maximum growth rates converge to limits that depend on the propagation direction. 
The disturbance waves propagating a t  the smaller angle to the basic wave grow at 
the larger rate. 

These results were obtained for inviscid fluids. I n  viscous fluids, the effect of dissipa- 
tion is proportional to  the square of the disturbance wavenumber, i.e. 

= (asin/3)2+(acosp+n)2. 

Thus, for any given value of p, the maximum growth rate A, no longer converges 
with increasing n, as shown in figure 5, but decreases rapidly for mode-numbers 
n comparable to or larger than some critical value n'. This critical value is deter- 
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mined by a disturbance wavenumber k,,, which produces viscous decay rates of 
the order of the growth rates obtained when dissipative effects are neglected. The 
value of n’ depends on p, so that the curves shown in figure 6 are affected considerably 
by dissipative effects. In  the neighbourhood of the discontinuity points pa and pB, 
for instance, the curves must undergo drastic changes because k, becomes extremely 
large. 

The author thanks Professor K. C. Yeh of the University of Illinois for helpful 
discussions. 
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